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Dynamics of the Infinite-Ranged Potts Model 
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We formulate a theory of single-spin-flip dynamics for the infinite-range q-state 
Potts model. We derive a Fokker-Planck equation, without diffusive term, from 
a phenomenological master equation. It describes the approach to equilibrium 
of the time-dependent probability density and thus generalizes Griffiths' (1966) 
result for the Ising model. We particularly compare the dynamic evolutions of 
q = 2 and q = 3 systems when sinusoidal external fields are applied. In the case 
q = 2 we find evidence of a nonequilibrium phase transition and for q = 3 period 
doubling bifurcations are observed, yielding a good estimate of Feigenbaum's 
universal exponent. 

KEY WORDS: Glauber dynamics; Potts model; Fokker-Planck equation; 
relaxation; period-doubling. 

1, I N T R O D U C T I O N  

The Pot t s  mode l  (4'8't2) (see ref. 13 for a review) is perhaps  the simplest  

genera l iza t ion  of  the Ising model .  I t  is the purpose  of this paper  to 
invest igate  the dynamic  evolu t ion  of the general  q-state Po t t s  mode l  in the 
inf ini te-range limit. This work  is essential ly a genera l iza t ion  of Griffi th 's  (16) 
results  for the Ising model .  

We  deduce  a F o k k e r - P l a n c k  (H) equa t ion  for the p robab i l i t y  d is t r ibu-  
t ion of the order  p a r a m e t e r  components ,  f rom a mas te r  equa t ion  which 
describes single-spin-fl ip processes with rates  chosen to obey deta i led  
ba lance  and  reducible  to G laube r ' s  (5) in the l imit  q - - 2 .  We also add  to the 

lqami l ton ian  a per iod ic  external  magnet ic  field which drives the system 
away  from equi l ibr ium.  

This pape r  is o rganized  as follows. In  the next sect ion we define the 
"model and  present  our  basic equat ions .  In  Section 3 we s tudy the dynamic  
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evolution. Time-dependent effects are presented in Section 4 for the q = 2 
and q- -3  cases. In the Appendix we show in more detail the intermediary 
calculations leading to the final result. 

2. T H E O R Y .  T H E  D Y N A M I C  M O D E L  

We consider the q-state Potts model described by the following 
Hamiltonian with N spin variables o.~ (o.i~ {1, 2 ..... q}): 

flJ 
/~jfN(O-N)=--q-~ ~ 6~i~--qZ~ h~b .... (1) 

( i , j )  o~ i 

Here the second term on the right side is the Zeeman energy, and the 
exchange couples every pair of spins. Since this model has no intrinsic 
dynamics, we define a stochastic evolution (5) with single spin flips, induced 
through contact with a thermal bath. With P({o.};t) denoting the 
probability for the configuration {o.} = {o.t, o.2 . . . . .  fiN} to be realized at 
time t, and W(o.i, {o.}i[ o.;~ {o.}~) the rate for the system to change the state 
of the spin i from o.i to o.;, we easily write the phenomenological master 
equation as 

? P ( { o . } ; t ) _ z  Z W ( o . ; , { f } i [ f r  
~t i (o;) 

- - E  Z W(f~, {f}ilo.;, {o.}i) g(o.i, {o-}i; ~) (2) 
i {a;} 

and P({o.}; t) obeys ~2~)P({o.}; t )=  1. 
This master equation describes the system with N spins and with qN 

states. In the following we use a single-spin-flip rate (8) which was shown to 
obey detailed balance and to correctly reduce to Glauber's form in the 
appropriate limit: 

exp  (/~(fN (a i ) )  
W(O'i ~ O.;) --  (3) 

~-~ {ai = 1, 2,...,q} e x p ( / ~ X ( f i ) )  

Others choices of rates can be used, (4'12) but our final results [Eq. (6)] are 
affected only by a multiplicative factor, which does not introduce any 
qualitative differences in the evolution to equilibrium. 

We define x~ to be the fraction of spins in the o. state: 

= n ~ _ _ l  ~ 6~.~j, a = l ,  2 ..... q (4) 
x~ N N j~l  
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Obviously, we obtain the sum rule x I --I- " ' "  - [ -  Xq ~--- 1, which implies that the 
state of the system is confined to this (q-1)-dimensional  space. These 
fractions play the role of order parameter components. (~31 We now consider 
the probability density P(x~, x2,..., Xq; t) - P ( x ;  t): 

q 

P(xl,  x2 ..... Xq; t ) =  ~ P(al, a2 ..... aN; t) 1--I 6x~,(lrN)X~'_ta~,~j (5) 

After some tedious but straightforward algebra (see the Appendix) we 
obtain a Fokker-Planck equation without diffusive term. This thus yields 
a deterministic evolution of the system which is equivalent to Langevin's 
flow equations for the order parameter components: 

where 

dx~(t) 
- ~ (1-qf~,~)W~xo,  7= l , . . . , q  (6) 

dt ~ = 1 

q 

Wo=e-kX~// Y, e -kx', k = ~ J  (7) 
c ~ = l  

These q -  1 coupled nonlinear equations are our final result. They will 
be shown to exhibit the decay to equilibrium of the q - 1  independent 
modes. If we assume that a small external field is applied along a particular 
direction in parameter space (say, direction c~ = 1), we may introduce the 
order parameter (longitudinal mode) m(t) and the transverse modes el(t), 
through 

xi(t ) =-1[1 + m(t)(q3i, 1 -  1)] +ai(t)  (8) 
q 

Then we easily find that the order parameter evolution decouples from the 
others and it shows how special the Ising model is (since it does not 
present the transverse modes): 

dm I I + ( q - 1 ) e - k m  e-km--1 ] 
d--7 = -- e---Z-~m~q----1 m + e k--~+q-- 1 (9) 

We always find the transverse modes to present fast relaxation, while the 
slow, longitudinal mode is the only one to exhibit critical slowing down. 
Equation (9) can be written in the following form: 

am c3G( k, m) 
- - =  -T(k ,  m) - -  (10) 
c~t c3rn 
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where  T(k, m) is g iven  by 

T(k, m) - 

and  G(k, m) by 

1 + (q-- 1)e -gq'~ 
e-kqm _~_ q _ 1 

Mendes and Lage 

m 2 1 ln(ekq m + q _ 1) l G(k ,m)=~- -q - - -~  - ~ l n [ e  q m ( q - - 1 ) + l ]  (11) 

W e  easi ly can  see tha t  T(k, m) is a lways  pos i t ive  a n d  G(k, m) is a n o n -  

inc reas ing  func t ion  of  t ime:  

OG(k, m) 
- - < ~ 0  

k<k k=k k,<k<k~ k=k 
i I " ~ c 

e) 0 g) 

kc<k<k 0 k:k 0 k<k 
0 

Fig. 1. Schematic representation of the free energy as a function of the order parameter m, 
for different values k (inverse temperature). (a) Paramagnetic region I. The only minimum at 
rn=0 indicates one stable paramagnetic phase. (b) Upper spinodal temperature. The 
inflection point indicates a double solution to an unstable ordered phase. (c) Paramagnetic 
region II. The local minima or maxima represent the metastable and unstable phases, 
respectively. (d) First-order phase transition (para-ferromagnetic). (e). Ordered region I. The 
paramagnetic phase is metastable. (f) Lower spinodal temperature. The inflection point is 
located at m = 0. The paramagnetic susceptibility presents a divergence here. (g) Ordered 
region II. Two minima indicate a stable phase (m > 0) and a metastable (m < 0) phasel The 
paramagnetic phase is unstable. 
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Here, the equality holds if and only if an equilibrium state has been 
reached. Thus G(k, m) is essentially a Lyapunov function which contains 
the entire stability structure of the dynamic system and the system will 
always approach one of the solutions of 

C k q m -  1 
= 0  

m e kqm + q - 1 

Analysis of the local stability of these solutions can be carried out on the 
usual way by linearizing Eq. (9) around the equilibrium point. This leads, 
as expected, to the well-known mean-field critical dynamic behavior and it 
shall be omitted here for conciseness. We are more interested in the general 
behavior of the system where the influence of the nonlinear terms are 
important.  In order to further study the solutions of Eq. (9), we have made 
some numerical investigations. 
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3. D Y N A M I C  EVOLUTION 

In this section we present and discuss the solution of Eqs. (6) and (9) 
for the case q = 3. In the mean field approximation (see ref. 13 for details) 
the Potts model has a first-order phase transition, with a discontinuity in 
the order parameter Am = 2 l n ( q -  1) at k c. If we analyze the free energies 
of this model (Fig. 1 shows the free energy along a symmetry-broken 
direction for different temperatures), we can define three relevant (inverse) 
temperatures: kl,  upper spinodal temperature (stability limit of the ordered 
phase), kc, the temperature of the first-order phase transition (equality of 
the free energies), and ko, the lower spinodal temperature (stability limit of 
the paramagnetic phase). For  q = 3 ,  they are given by k]=2.7456, 
kc = 2.7725, ko = 3 . 0 .  (13)  

We study numerically the evolution given by Eq. (9) in different 
domains of temperature. Figure 2 shows the evolution to the minima of the 
free energy for different initial values m 0 and in Fig. 3 we see that even if 
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the system starts near one of the metastable points, which lie closer to the 
origin, it will evolve toward a stable point (as can also be seen from Fig. 6). 
Therefore, the metastable points are actually saddle points in configuration 
space. Without symmetry breaking the evolution of the q =  3 system 
described by Eq.(6)  is better expressed in the plane defined by 
xt + x2 + x3 = 1, where the free energy has several minima and maxima as 
a function of k. These points can be seen in Figs. 5-6. This space is more 
conveniently described by the symmetrical combinations: 

Q,(t)=-~- (Xz- Xl) 3 
and Q2(t) = 1 - ~  (x 1 +x2)  (12) 

The solutions of Eq. (6) are then expressed as flux diagrams. We choose 
initial values very close to the boundaries; Figs. 4-6 show the evolution for 
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Fig. 4. Trajectories in the Q1-Q2 plane (for q = 3 Potts model) for different initial starting 
points. Tick marks indicate equal time intervals. 
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different values of k. The phase space has the symmetry of an equilateral 
triangle; therefore the different starting points plotted in the graph can be 
rotated to give more detailed information. 

At high temperatures (k < kl,  Fig. 4, Fig. la) the system evolves to the 
origin, independently of the starting point. For k = k c (Fig. 5, Fig. ld) the 
situation is qualitatively different, since now the system has four attractors, 
with basins of attraction clearly isolated by separatrices. In the low- 
temperature phase (k > k o, Fig. 6, Fig. lg) there are six fixed points, but 
three of them correspond to saddle points which can only be reached if the 
starting point lies at one of the bisections of the triangle. In all other cases 
the system goes to one of one of the absolute minima (stable points), which 
lie nearer to the vertices of the triangle. These results, which, of course, 
conform with the expected equilibrium phases of the system, were obtained 
by computer integration, using the fourth-order Runge-Kutta method with 
adaptive stepwise. 
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Fig. 5. Trajectories in the Q1-Q2 plane (for q = 3 Potts model) for different initial starting 
points. Tick marks indicate equal time intervals. Open circles correspond to stable states and 
full circles to metastable solutions, for k = 2.77258. 
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Fig. 6. Trajectories in the Q1 Q2 plane (for q = 3 Potts model) for different initial starting 
points. Tick marks indicate equal time intervals. Open circles correspond to stable states and 
the squares to metastable solutions, for k = 3.2. 

4. TIME-DEPENDENT EFFECTS 

4.1. Ising Model ( q = 2 )  

We consider the dynamic evolution under the influence of a time- 
dependent external magnetic field: 

h(t )  = h o sin(cot) (13) 

When the ac magnetic field is absent our results are the same as derived by 
others authors. (1,6,1~ With the field, our equation of motion takes the form 

dm 

dt 
- - m ( t ) + t a n h [ E ( t ) ]  

E ( t )  = k m ( t )  + h(t)  

(14a) 

(14b) 
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We want to study how the phase diagram changes with the amplitude 
and frequency of the applied magnetic field. It is here useful to introduce 
the static spinodal ("coercive field") magnetic field h c, given by 

{ hc=z ln (1  + m c ) - ~ l n ( - m c )  r m c ,  m c =  - ( r >  l) 

(15) 

This is the field above which there is only one minimum for the free energy 
and it corresponds to the transformation of a metastable state into an 
unstable one. For small re(t), h(t), and E(t) we can analyze Eq. (14a) by 
expanding its right-hand side in powers of E(t). However, we are interested 
also in the case of external ac field with strong amplitude, and this compels 
us to solve Eq. (14a) numerically; the solution re(t) after a stationary state 
has been reached is decomposed in Fourier series: 

m o  
re(t)=--}-+ ~ rnnsin(no)t+O~) (16) 

n - - I  

One notices that the amplitudes of the first harmonics (ml and m2) are 
proportional to the linear and nonlinear susceptibilities. Figures 7a-7c 
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show the ampli tudes  of the first ha rmonic  for different values of the 
external period and ampli tude h 0. We find that  there appears  to exist a 
well-defined field ampli tude h' C for which the first ha rmonic  has a sharp 
increase and the second ha rmonic  (rn2) presents a maximum.  We show in 
Figs. 8a 8c the ampli tudes  mo,  m l , r n 2 .  We thus identify an out-of- 
equil ibrium dynamic  transit ion (which generalizes the static, out-of- 
equil ibrium transit ion taking place at h = h o ,  for the case of a static 
magnet ic  field). In Fig. 9 we plot  the frequency dependence of this critical 
field h;;  we find that  the law 

1 
h ' ~ - h  c oc ~ oc oo 

is well obeyed not only at small frequencies (where the 
approx imat ion  should hold), but  at higher frequencies as well. 
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hc, the free energy presents two minima, of which one has lower free 
energy (corresponding to the preferred phase). However, in the absence of 
noise, the system may be found in the other minimum (metastable state) 
until h =hc; when this minimum disappears, the system then !'falls" into 
the stable minimum. However, if the field is changed periodically, then the 
system may have no time to evolve to the stable point. As the field 
decreases it may create again the metastable minimum before the system 
has had the chance to leave the corresponding basin of attraction. There- 
fore, one expects that if a periodic field is applied, the amplitude of the field 
that completely destabilizes one phase should increase. This is as observed, 
through we have no explanation for the simple linear law we obtained. 

4.2. Potts  Model  ( q = 3 )  

In this case a sinusoidal external rotating magnetic ac field periodically 
gives more weight to one of the phases and destabilizes the other two. The 
applied ac magnetic field has the form 

h~(t)=hosin oot+ (17) 
q /  
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This is the simplest generalization of the field considered for the Ising case. 
The phase shift is introduced to force the field to rotate in the phase space, 
so that the ac magnetic field points periodically along the symmetry 
directions of the phase space. If the field amplitude ho is small, the system 
evolves toward the basins of attraction of one of the stable fixed points; but 
for higher values we observe stationary cycles involving the three fixed 
points. The most interesting case is when the temperature is near the first- 
order phase transition point (Fig. ld): at fixed value of T and varying the 
magnitude of the ac field, we observe a cascade of period-doubling bifurca- 
tions. Figures 10a-10d show a typical cycle in each of the first intervals of 
bifurcation. This happens because the system is forced by the field to leave 
one minimum of the free energy and pass to another one, after, however, 
some time delay (of the order of the relaxation time). This time delay is 
independent of the applied field, so that when the system finds itself near 
the minimum previously defined by the field, this has already taken an 
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indicated. These trajectories change from small periods to high periods when the field h0 
changes. T is the period of the applied field; T' is the period of the induced order parameter. 
(a) r ' =  T (=40); (b) T'=2T; (c) T'=4T; (d) T'=8T.  
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unfavorable value. It appears to us that this type of behavior (found for 
q = 3, but not found for the Ising model) is related to the topology of phase 
space: the attractors are separated by high-energy barriers for certain 
directions (along which the transverse modes exhibit their fast decay) and 
lower energy barriers for perpendicular directions (along which the 
longitudinal mode relaxes). Thus, after an intial transient period, the 
system settles in a dynamic state characterized by the conflict between the 
slow relaxational mode, driving the system toward equilibrium, and the 
external field, dragging the system away from the attractors. A numerical 
study of this behaviour allows us to estimate Feigenbaum's universal 
number 6. (2'3) We find 6 = 4.6_+0.2. We obtain the values of the field 
amplitude h o for which the period duplicates by analyzing the order 
parameters Ql(t) and Q2(t). We use the Runge-Kutta method of integra- 
tion of equations and the power spectra method, and we compute the 
Fourier transform by using the fast Fourier transformation method (FFT) 
of the solution trajectories with 2048 and 4096 points. Standard routines 
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are used (the routine for FFT can be seen in detail in ref. 7). The rapid 
convergence rate of the doubling sequence makes it very difficult to observe 
many bifurcations and is responsible for the numerical error. 

5. C O N C L U S I O N  

We study single-spin-flip dynamics in the infinite-range q-state Potts 
model, where we derive the Langevin equation from the microscopic 
master equation. We first study evolution toward stable and metastable 
states (for q~> 3). We show that the q - 1  modes separate into fast ones 
(transverse) and a slow one (longitudinal) associated with order parameter 
relaxation. We also consider the effects induced by a sinusoidatly varying 
external magnetic field. 

For the Ising case, we found a dynamic transition with a characteristic 
frequency dependence of the spinodal field below the Curie point with a 
sharp increase at the transition point. Analyzing the amplitudes of first and 
second harmonics, we extracted the value h' c where this sharp increase 
takes place. We found that 

1 
h ' o - h  o oc ~ o c  o) 

where ho is the spinodal (static) field. 
For q = 3 we observe limit cycles and a cascade of period-doubling 

bifurcations when the field magnitude changes. We numerically estimate 
Feigenbaum's ~ exponent as 5 = 4.6 + 0.2. 

A P P E N D I X  

Here we derive Eq. (6) in a more detailed form. Using the rates (3), we 
can write the master Eq. (2) as 

~ P ( ( ~ i ,  {0"}i; t) 
at - ~ '  ~ ( 1 - q 6 o ~ ; ) W ( a ; ) P ( ~ ,  {(r)i;t ) (A.1) 

Introducing the variables xo and the probabilities P(x; t) 
[x = (x l ,  x2,..., Xq)] given by (5), we can obtain the following equation: 

~P(x; t) 
- -q6 . . . .  ;) t X l  ( ~  1,  t 

Ot t ff i t 

(A.2) 
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where 

PI a;,xl-~6~,.1 ..... Xq--~6~,,q;t 
q 

~- E P(o';, {o'},; t)) H ~.'c:c (I/N)6ai, z,(1/N)5-leldj, ~ (a.3)  
{o.}i fl=l 

That is, P1 is the probability distribution of one spin in a selected state and 
all the others distributed with fractions xl, x2,..., Xq. 

We now make an expansion in powers of 1/N (N--+ oc) of Eq. (A.2), 
obtaining the following Fokker-Planck equation: 

~?P(x; t) c?t c~ I ~  J ~ x ~  (1 - q3,,, ~) W(cr')Pl(a',x;t ) (A.4) 

We easily find from the definitions of the probability densities that 
q 

P(o, ,  x; t ) =  E p(o-,, {if}i; t)) H (~.,c~ (1/NJ6ai,=,(1/N)~;'),~i6~),= 

= F,,,(x; t) (A.5) 

obey the normalization condition: 

~f(H/ dx')F~(x;t'6Q ~=1x~ (A.6) 

Recalling that the probability to find one spin in state a is x ~  : 

xo(t) = ~ P(e; t)6~.~ (A.7) 

where P(c~; t) is the probability for the system to be in the c~ state, we easily 
find 

Pl(a, x; t )=  x~P(x; t) (A.8) 

Therefore, we obtain 

(?P(x; t) 

c?t 

This equation 
given by 

~x~(1-q6~)W(a)x .P(x ; t )  (A.9) 

has a deterministic evolution, with a probability density 

q 
P(x;  t) = H ( ~ ( x i -  x i ( t ) )  ~ O(x -- x(/))  (A.10) 

i=1 

Using (A.8) and (A.9), we arrive at Eq. (6), which is our final result. 

822/64/3 -4-13 
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